BikeParts Wiki

Template:About Template:Pp-semi-vandalism Template:Pp-move-indef Template:Infobox aluminium Aluminium (or aluminum; see spelling below) is a silvery white and ductile member of the boron group of chemical elements. It has the symbol Al and its atomic number is 13. It is not soluble in water under normal circumstances. Aluminium is the most abundant metal in the Earth's crust, and the third most abundant element therein, after oxygen and silicon. It makes up about 8% by weight of the Earth's solid surface. Aluminium is too reactive chemically to occur in nature as a free metal. Instead, it is found combined in over 270 different minerals.[1] The chief source of aluminium is bauxite ore.

Aluminium is remarkable for the metal's low density and for its ability to resist corrosion due to the phenomenon of passivation. Structural components made from aluminium and its alloys are vital to the aerospace industry and are very important in other areas of transportation and building. Its reactive nature makes it useful as a catalyst or additive in chemical mixtures, including ammonium nitrate explosives, to enhance blast power.


File:Aluminium bar surface etched.jpg

Etched surface from a high purity (99.9998%) aluminium bar, size 55×37 mm

Aluminium is a soft, durable, lightweight, malleable metal with appearance ranging from silvery to dull grey, depending on the surface roughness. Aluminium is nonmagnetic and nonsparking. It is also insoluble in alcohol, though it can be soluble in water in certain forms. The yield strength of pure aluminium is 7–11 MPa, while aluminium alloys have yield strengths ranging from 200 MPa to 600 MPa.[2] Aluminium has about one-third the density and stiffness of steel. It is ductile, and easily machined, cast, drawn and extruded.

Corrosion resistance can be excellent due to a thin surface layer of aluminium oxide that forms when the metal is exposed to air, effectively preventing further oxidation. The strongest aluminium alloys are less corrosion resistant due to galvanic reactions with alloyed copper.[2] This corrosion resistance is also often greatly reduced when many aqueous salts are present, particularly in the presence of dissimilar metals.

Aluminium atoms are arranged in a face-centred cubic (fcc) structure. Aluminium has a stacking-fault energy of approximately 200 mJ/m2.[3]

Aluminium is one of the few metals that retain full silvery reflectance in finely powdered form, making it an important component of silver paints. Aluminium mirror finish has the highest reflectance of any metal in the 200–400 nm (UV) and the 3,000–10,000 nm (far IR) regions; in the 400–700 nm visible range it is slightly outperformed by tin and silver and in the 700–3000 (near IR) by silver, gold, and copper.[4]

Aluminium is a good thermal and electrical conductor, having 62% the conductivity of copper. Aluminium is capable of being a superconductor, with a superconducting critical temperature of 1.2 kelvins and a critical magnetic field of about 100 gauss (10 milliteslas).[5]


Aluminium has nine isotopes, whose mass numbers range from 23 to 30. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = 7.2×105 y) occur naturally; however, 27Al has a natural abundance above 99.9%. 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of transport, deposition, sediment storage, burial times, and erosion on 105 to 106 year time scales.[6] Cosmogenic 26Al was first applied in studies of the Moon and meteorites. Meteoroid fragments, after departure from their parent bodies, are exposed to intense cosmic-ray bombardment during their travel through space, causing substantial 26Al production. After falling to Earth, atmospheric shielding protects the meteorite fragments from further 26Al production, and its decay can then be used to determine the meteorite's terrestrial age. Meteorite research has also shown that 26Al was relatively abundant at the time of formation of our planetary system. Most meteorite scientists believe that the energy released by the decay of 26Al was responsible for the melting and differentiation of some asteroids after their formation 4.55 billion years ago.[7]

Natural occurrence[]

In the Earth's crust, aluminium is the most abundant (8.3% by weight) metallic element and the third most abundant of all elements (after oxygen and silicon).[8] Because of its strong affinity to oxygen, however, it is almost never found in the elemental state; instead it is found in oxides or silicates. Feldspars, the most common group of minerals in the Earth's crust, are aluminosilicates. Native aluminium metal can be found as a minor phase in low oxygen fugacity environments, such as the interiors of certain volcanoes.[9] It also occurs in the minerals beryl, cryolite, garnet, spinel and turquoise.[8]Template:Inote Impurities in Al2O3, such as chromium or cobalt yield the gemstones ruby and sapphire, respectively.Template:Inote Pure Al2O3, known as corundum, is one of the hardest materials known.[8]Template:Inote

Although aluminium is an extremely common and widespread element, the common aluminium minerals are not economic sources of the metal. Almost all metallic aluminium is produced from the ore bauxite (AlOx(OH)3-2x). Bauxite occurs as a weathering product of low iron and silica bedrock in tropical climatic conditions.[10] Large deposits of bauxite occur in Australia, Brazil, Guinea and Jamaica but the primary mining areas for the ore are in Ghana, Indonesia, Jamaica, Russia and Surinam.[11]Template:Inote Smelting of the ore mainly occurs in Australia, Brazil, Canada, Norway, Russia and the United States.Template:Inote Because smelting is an energy-intensive process, regions with excess natural gas supplies (such as the United Arab Emirates) are becoming aluminium refiners.

Production and refinement[]

Although aluminium is the most abundant metallic element in the Earth's crust, it is never found in free, metallic form, and it was once considered a precious metal more valuable than gold. Napoleon III, Emperor of France, is reputed to have given a banquet where the most honoured guests were given aluminium utensils, while the others had to make do with gold.[12][13] The Washington Monument was completed, with the 100 ounce (2.8 kg) aluminium capstone being put in place on December 6, 1884, in an elaborate dedication ceremony. It was the largest single piece of aluminium cast at the time, when aluminium was as expensive as silver.[14] Aluminium has been produced in commercial quantities for just over 100 years.

File:Bauxite hérault.JPG


Aluminium is a strongly reactive metal that forms a high-energy chemical bond with oxygen. Compared to most other metals, it is difficult to extract from ore, such as bauxite, due to the energy required to reduce aluminium oxide (Al2O3). For example, direct reduction with carbon, as is used to produce iron, is not chemically possible, since aluminium is a stronger reducing agent than carbon. However there is an indirect carbothermic reduction possible by using carbon and Al2O3 which forms an intermediate Al4C3 and this can further yield aluminium metal at a temperature of 1900–2000°C. This process is still under development. This process costs less energy and yields less CO2 than the Hall-Héroult process.[15] Aluminium oxide has a melting point of about Template:Convert. Therefore, it must be extracted by electrolysis. In this process, the aluminium oxide is dissolved in molten cryolite and then reduced to the pure metal. The operational temperature of the reduction cells is around Template:Convert. Cryolite is found as a mineral in Greenland, but in industrial use it has been replaced by a synthetic substance. Cryolite is a chemical compound of aluminium, sodium, and calcium fluorides: (Na3AlF6). The aluminium oxide (a white powder) is obtained by refining bauxite in the Bayer process of Karl Bayer. (Previously, the Deville process was the predominant refining technology.)

The electrolytic process replaced the Wöhler process, which involved the reduction of anhydrous aluminium chloride with potassium. Both of the electrodes used in the electrolysis of aluminium oxide are carbon. Once the refined alumina is dissolved in the electrolyte, its ions are free to move around. The reaction at the cathode is:

Al3+ + 3 e → Al

Here the aluminium ion is being reduced. The aluminium metal then sinks to the bottom and is tapped off, usually cast into large blocks called aluminium billets for further processing.

At the anode, oxygen is formed:

2 O2− → O2 + 4 e

This carbon anode is then oxidized by the oxygen, releasing carbon dioxide:

O2 + C → CO2

The anodes in a reduction cell must therefore be replaced regularly, since they are consumed in the process.

Unlike the anodes, the cathodes are not oxidized because there is no oxygen present, as the carbon cathodes are protected by the liquid aluminium inside the cells. Nevertheless, cathodes do erode, mainly due to electrochemical processes and metal movement. After five to ten years, depending on the current used in the electrolysis, a cell has to be rebuilt because of cathode wear.

File:Aluminium - world production trend.svg

World production trend of aluminium

Aluminium electrolysis with the Hall-Héroult process consumes a lot of energy, but alternative processes were always found to be less viable economically and/or ecologically. The worldwide average specific energy consumption is approximately 15±0.5 kilowatt-hours per kilogram of aluminium produced (52 to 56 MJ/kg). The most modern smelters achieve approximately 12.8 kW·h/kg (46.1 MJ/kg). (Compare this to the heat of reaction, 31 MJ/kg, and the Gibbs free energy of reaction, 29 MJ/kg.) Reduction line currents for older technologies are typically 100 to 200 kiloamperes; state-of-the-art smelters[16] operate at about 350 kA. Trials have been reported with 500 kA cells.

Electric power represents about 20% to 40% of the cost of producing aluminium, depending on the location of the smelter. Smelters tend to be situated where electric power is both plentiful and inexpensive, such as South Africa, Ghana, the South Island of New Zealand, Australia, the People's Republic of China, the Middle East, Russia, Quebec and British Columbia in Canada, and Iceland.[17]

File:Aluminium output2.PNG

Aluminium output in 2005

In 2005, the People's Republic of China was the top producer of aluminium with almost a one-fifth world share, followed by Russia, Canada, and the USA, reports the British Geological Survey.

Over the last 50 years, Australia has become a major producer of bauxite ore and a major producer and exporter of alumina.[18] Australia produced 62 million tonnes of bauxite in 2005. The Australian deposits have some refining problems, some being high in silica but have the advantage of being shallow and relatively easy to mine.[19]


File:41 ALU Recycling Code.svg

Aluminium recycling code

Aluminium is 100% recyclable without any loss of its natural qualities. Recovery of the metal via recycling has become an important facet of the aluminium industry.

Recycling involves melting the scrap, a process that requires only five percent of the energy used to produce aluminium from ore. However, a significant part (up to 15% of the input material) is lost as dross (ash-like oxide).[20] The dross can undergo a further process to extract aluminium.

Recycling was a low-profile activity until the late 1960s, when the growing use of aluminium beverage cans brought it to the public awareness.

In Europe aluminium experiences high rates of recycling, ranging from 42% of beverage cans, 85% of construction materials and 95% of transport vehicles.[21]

Recycled aluminium is known as secondary aluminium, but maintains the same physical properties as primary aluminium. Secondary aluminium is produced in a wide range of formats and is employed in 80% of the alloy injections. Another important use is for extrusion.

White dross from primary aluminium production and from secondary recycling operations still contains useful quantities of aluminium which can be extracted industrially.[22] The process produces aluminium billets, together with a highly complex waste material. This waste is difficult to manage. It reacts with water, releasing a mixture of gases (including, among others, hydrogen, acetylene, and ammonia) which spontaneously ignites on contact with air;[23] contact with damp air results in the release of copious quantities of ammonia gas. Despite these difficulties, however, the waste has found use as a filler in asphalt and concrete.[24]


Oxidation state +1[]

AlH is produced when aluminium is heated in an atmosphere of hydrogen. Al2O is made by heating the normal oxide, Al2O3, with silicon at Template:Convert in a vacuum.[25]

Al2S can be made by heating Al2S3 with aluminium shavings at Template:Convert in a vacuum.[25] It quickly disproportionates to the starting materials. The selenide is made in a parallel manner.

AlF, AlCl and AlBr exist in the gaseous phase when the tri-halide is heated with aluminium. Aluminium halides usually exist in the form AlX3, where X is F, Cl, Br, or I.[25]

Oxidation state +2[]

Aluminium monoxide, AlO, has been detected in the gas phase after explosion[26] and in stellar absorption spectra.[27]

Oxidation state +3[]

Fajans' rules show that the simple trivalent cation Al3+ is not expected to be found in anhydrous salts or binary compounds such as Al2O3. The hydroxide is a weak base and aluminium salts of weak acids, such as carbonate, cannot be prepared. The salts of strong acids, such as nitrate, are stable and soluble in water, forming hydrates with at least six molecules of water of crystallization.

Aluminium hydride, (AlH3)n, can be produced from trimethylaluminium and an excess of hydrogen. It burns explosively in air. It can also be prepared by the action of aluminium chloride on lithium hydride in ether solution, but cannot be isolated free from the solvent. Alumino-hydrides of the most electropositive elements are known, the most useful being lithium aluminium hydride, Li[AlH4]. It decomposes into lithium hydride, aluminium and hydrogen when heated, and is hydrolysed by water. It has many uses in organic chemistry, particularly as a reducing agent. The aluminohalides have a similar structure.

Aluminium hydroxide may be prepared as a gelatinous precipitate by adding ammonia to an aqueous solution of an aluminium salt. It is amphoteric, being both a very weak acid, and forming aluminates with alkalis. It exists in various crystalline forms.

Aluminium carbide, Al4C3 is made by heating a mixture of the elements above Template:Convert. The pale yellow crystals have a complex lattice structure, and react with water or dilute acids to give methane. The acetylide, Al2(C2)3, is made by passing acetylene over heated aluminium.

Aluminium nitride, AlN, can be made from the elements at Template:Convert. It is hydrolysed by water to form ammonia and aluminium hydroxide. Aluminium phosphide, AlP, is made similarly, and hydrolyses to give phosphine.

Aluminium oxide, Al2O3, occurs naturally as corundum, and can be made by burning aluminium in oxygen or by heating the hydroxide, nitrate or sulfate. As a gemstone, its hardness is only exceeded by diamond, boron nitride, and carborundum. It is almost insoluble in water. Aluminium sulfide, Al2S3, may be prepared by passing hydrogen sulfide over aluminium powder. It is polymorphic.

Aluminium iodide, AlI3, is a dimer with applications in organic synthesis. Aluminium fluoride, AlF3, is made by treating the hydroxide with HF, or can be made from the elements. It is a macromolecule which sublimes without melting at Template:Convert. It is very inert. The other trihalides are dimeric, having a bridge-like structure.

When aluminium and fluoride are together in aqueous solution, they readily form complex ions such as Template:Chem, Template:Chem, and Template:Chem. Of these, Template:Chem is the most stable. This is explained by the fact that aluminium and fluoride, which are both very compact ions, fit together just right to form the octahedral aluminium hexafluoride complex. When aluminium and fluoride are together in water in a 1:6 molar ratio, Template:Chem is the most common form, even in rather low concentrations.

Organometallic compounds of empirical formula AlR3 exist and, if not also polymers, are at least dimers or trimers. They have some uses in organic synthesis, for instance trimethylaluminium.


The presence of aluminium can be detected in qualitative analysis using aluminon.


General use[]

Aluminium is the most widely used non-ferrous metal.[28] Global production of aluminium in 2005 was 31.9 million tonnes. It exceeded that of any other metal except iron (837.5 million tonnes).[29] Forecast for 2012 is 42–45 million tons, driven by rising Chinese output.[30] Relatively pure aluminium is encountered only when corrosion resistance and/or workability is more important than strength or hardness. A thin layer of aluminium can be deposited onto a flat surface by physical vapour deposition or (very infrequently) chemical vapour deposition or other chemical means to form optical coatings and mirrors. When so deposited, a fresh, pure aluminium film serves as a good reflector (approximately 92%) of visible light and an excellent reflector (as much as 98%) of medium and far infrared radiation.

Pure aluminium has a low tensile strength, but when combined with thermo-mechanical processing, aluminium alloys display a marked improvement in mechanical properties, especially when tempered. Aluminium alloys form vital components of aircraft and rockets as a result of their high strength-to-weight ratio. Aluminium readily forms alloys with many elements such as copper, zinc, magnesium, manganese and silicon (e.g., duralumin). Today, almost all bulk metal materials that are referred to loosely as "aluminium", are actually alloys. For example, the common aluminium foils are alloys of 92% to 99% aluminium.[31]


Household aluminium foil

File:Austin A40 Roadster ca 1951.jpg

Aluminium-bodied Austin "A40 Sports" (circa 1951)


Aluminium slabs being transported from the smelters

Some of the many uses for aluminium metal are in:

  • Transportation (automobiles, aircraft, trucks, railway cars, marine vessels, bicycles etc.) as sheet, tube, castings etc.
  • Packaging (cans, foil, etc.)
  • Construction (windows, doors, siding, building wire, etc.)
  • A wide range of household items, from cooking utensils to baseball bats, watches.[32]
  • Street lighting poles, sailing ship masts, walking poles etc.
  • Outer shells of consumer electronics, also cases for equipment e.g. photographic equipment.
  • Electrical transmission lines for power distribution
  • MKM steel and Alnico magnets
  • Super purity aluminium (SPA, 99.980% to 99.999% Al), used in electronics and CDs.
  • Heat sinks for electronic appliances such as transistors and CPUs.
  • Substrate material of metal-core copper clad laminates used in high brightness LED lighting.
  • Powdered aluminium is used in paint, and in pyrotechnics such as solid rocket fuels and thermite.
  • Aluminium can be reacted with hydrochloric acid to form hydrogen gas.

Aluminium compounds[]

  • Aluminium ammonium sulfate ([Al(NH4)](SO4)2), ammonium alum is used as a mordant, in water purification and sewage treatment, in paper production, as a food additive, and in leather tanning.
  • Aluminium acetate is a salt used in solution as an astringent.
  • Aluminium borate (Al2O3 B2O3) is used in the production of glass and ceramic.
  • Aluminium borohydride (Al(BH4)3) is used as an additive to jet fuel.
  • Aluminium bronze (CuAl5)
  • Aluminium chloride (AlCl3) is used in paint manufacturing, in antiperspirants, in petroleum refining and in the production of synthetic rubber.
  • Aluminium chlorohydrate is used as an antiperspirant and in the treatment of hyperhidrosis.
  • Aluminium fluorosilicate (Al2(SiF6)3) is used in the production of synthetic gemstones, glass and ceramic.
  • Aluminium hydroxide (Al(OH)3) is used: as an antacid, as a mordant, in water purification, in the manufacture of glass and ceramic and in the waterproofing of fabrics.
  • Aluminium oxide (Al2O3), alumina, is found naturally as corundum (rubies and sapphires), emery, and is used in glass making. Synthetic ruby and sapphire are used in lasers for the production of coherent light. Used as a refractory, essential for the production of high pressure sodium lamps.
  • Aluminium phosphate (AlPO4) is used in the manufacture: of glass and ceramic, pulp and paper products, cosmetics, paints and varnishes and in making dental cement.
  • Aluminium sulfate (Al2(SO4)3) is used in the manufacture of paper, as a mordant, in a fire extinguisher, in water purification and sewage treatment, as a food additive, in fireproofing, and in leather tanning.
  • Aqueous aluminium ions (such as found in aqueous aluminium sulfate) are used to treat against fish parasites such as Gyrodactylus salaris.
  • In many vaccines, certain aluminium salts serve as an immune adjuvant (immune response booster) to allow the protein in the vaccine to achieve sufficient potency as an immune stimulant.

Aluminium alloys in structural applications[]

File:Aluminium foam.jpg

Aluminium foam

Aluminium alloys with a wide range of properties are used in engineering structures. Alloy systems are classified by a number system (ANSI) or by names indicating their main alloying constituents (DIN and ISO).

The strength and durability of aluminium alloys vary widely, not only as a result of the components of the specific alloy, but also as a result of heat treatments and manufacturing processes. A lack of knowledge of these aspects has from time to time led to improperly designed structures and gained aluminium a bad reputation.

One important structural limitation of aluminium alloys is their fatigue strength. Unlike steels, aluminium alloys have no well-defined fatigue limit, meaning that fatigue failure will eventually occur under even very small cyclic loadings. This implies that engineers must assess these loads and design for a fixed life rather than an infinite life.

Another important property of aluminium alloys is their sensitivity to heat. Workshop procedures involving heating are complicated by the fact that aluminium, unlike steel, will melt without first glowing red. Forming operations where a blow torch is used therefore requires some expertise, since no visual signs reveal how close the material is to melting. Aluminium alloys, like all structural alloys, also are subject to internal stresses following heating operations such as welding and casting. The problem with aluminium alloys in this regard is their low melting point, which make them more susceptible to distortions from thermally induced stress relief. Controlled stress relief can be done during manufacturing by heat-treating the parts in an oven, followed by gradual cooling—in effect annealing the stresses.

The low melting point of aluminium alloys has not precluded their use in rocketry; even for use in constructing combustion chambers where gases can reach 3500 K. The Agena upper stage engine used a regeneratively cooled aluminium design for some parts of the nozzle, including the thermally critical throat region.

Household wiring[]

Compared to copper, aluminium has about 65% of the electrical conductivity by volume, although 200% by weight. Traditionally copper is used as household wiring material. In the 1960s aluminium was considerably cheaper than copper, and so was introduced for household electrical wiring in the United States, even though many fixtures had not been designed to accept aluminium wire. In some cases the greater coefficient of thermal expansion of aluminium causes the wire to expand and contract relative to the dissimilar metal screw connection, eventually loosening the connection. Also, pure aluminium has a tendency to creep under steady sustained pressure (to a greater degree as the temperature rises), again loosening the connection. Finally, Galvanic corrosion from the dissimilar metals increased the electrical resistance of the connection.

All of this resulted in overheated and loose connections, and this in turn resulted in fires. Builders then became wary of using the wire, and many jurisdictions outlawed its use in very small sizes in new construction. Eventually, newer fixtures were introduced with connections designed to avoid loosening and overheating. The first generation fixtures were marked "Al/Cu" and were ultimately found suitable only for copper-clad aluminium wire, but the second generation fixtures, which bear a "CO/ALR" coding, are rated for unclad aluminium wire. To adapt older assemblies, workers forestall the heating problem using a properly-done crimp of the aluminium wire to a short "pigtail" of copper wire. Today, new alloys, designs, and methods are used for aluminium wiring in combination with aluminium termination.



The statue of the Anteros (commonly mistaken for either The Angel of Christian Charity or Eros) in Piccadilly Circus London, was made in 1893 and is one of the first statues to be cast in aluminium.

Ancient Greeks and Romans used aluminium salts as dyeing mordants and as astringents for dressing wounds; alum is still used as a styptic. In 1761 Guyton de Morveau suggested calling the base alum alumine. In 1808, Humphry Davy identified the existence of a metal base of alum, which he at first termed alumium and later aluminum (see Etymology section, below).

The metal was first produced in 1825 (in an impure form) by Danish physicist and chemist Hans Christian Ørsted. He reacted anhydrous aluminium chloride with potassium amalgam and yielded a lump of metal looking similar to tin.[33] Friedrich Wöhler was aware of these experiments and cited them, but after redoing the experiments of Ørsted he concluded that this metal was pure potassium. He conducted a similar experiment in 1827 by mixing anhydrous aluminium chloride with potassium and yielded aluminium.[33] Wöhler is generally credited with isolating aluminium (Latin alumen, alum), but also Ørsted can be listed as its discoverer.[34] Further, Pierre Berthier discovered aluminium in bauxite ore and successfully extracted it.[35] Frenchman Henri Etienne Sainte-Claire Deville improved Wöhler's method in 1846, and described his improvements in a book in 1859, chief among these being the substitution of sodium for the considerably more expensive potassium.

(Note: The title of Deville's book is De l'aluminium, ses propriétés, sa fabrication (Paris, 1859). Deville likely also conceived the idea of the electrolysis of aluminium oxide dissolved in cryolite; however, Charles Martin Hall and Paul Héroult might have developed the more practical process after Deville.)

Before the Hall-Héroult process was developed, aluminium was exceedingly difficult to extract from its various ores. This made pure aluminium more valuable than gold.[36] Bars of aluminium were exhibited at the Exposition Universelle of 1855,[37] and Napoleon III was said[citation needed] to have reserved a set of aluminium dinner plates for his most honoured guests.

Aluminium was selected as the material to be used for the apex of the Washington Monument in 1884, a time when one ounce (30 grams) cost the daily wage of a common worker on the project;[38] aluminium was about the same value as silver.

The Cowles companies supplied aluminium alloy in quantity in the United States and England using smelters like the furnace of Carl Wilhelm Siemens by 1886.[39] Charles Martin Hall of Ohio in the U.S. and Paul Héroult of France independently developed the Hall-Héroult electrolytic process that made extracting aluminium from minerals cheaper and is now the principal method used worldwide. The Hall-Heroult process cannot produce Super Purity Aluminium directly. Hall's process,[40] in 1888 with the financial backing of Alfred E. Hunt, started the Pittsburgh Reduction Company today known as Alcoa. Héroult's process was in production by 1889 in Switzerland at Aluminium Industrie, now Alcan, and at British Aluminium, now Luxfer Group and Alcoa, by 1896 in Scotland.[41]

By 1895 the metal was being used as a building material as far away as Sydney, Australia in the dome of the Chief Secretary's Building.

Many navies use an aluminium superstructure for their vessels, however, the 1975 fire aboard USS Belknap that gutted her aluminium superstructure, as well as observation of battle damage to British ships during the Falklands War, led to many navies switching to all steel superstructures. The Arleigh Burke class was the first such U.S. ship, being constructed entirely of steel.

In 2008 the price of aluminium peaked at $1.45/lb in July but dropped to $0.70/lb by December.[42]


Nomenclature history[]

The earliest citation given in the Oxford English Dictionary for any word used as a name for this element is alumium, which British chemist and inventor Humphry Davy employed in 1808 for the metal he was trying to isolate electrolytically from the mineral alumina. The citation is from the journal Philosophical Transactions of the Royal Society of London: "Had I been so fortunate as to have obtained more certain evidences on this subject, and to have procured the metallic substances I was in search of, I should have proposed for them the names of silicium, alumium, zirconium, and glucium."[43][44]

Davy had settled on aluminum by the time he published his 1812 book Chemical Philosophy: "This substance appears to contain a peculiar metal, but as yet Aluminum has not been obtained in a perfectly free state, though alloys of it with other metalline substances have been procured sufficiently distinct to indicate the probable nature of alumina."[45] But the same year, an anonymous contributor to the Quarterly Review, a British political-literary journal, in a review of Davy's book, objected to aluminum and proposed the name aluminium, "for so we shall take the liberty of writing the word, in preference to aluminum, which has a less classical sound."[46]

The -ium suffix conformed to the precedent set in other newly discovered elements of the time: potassium, sodium, magnesium, calcium, and strontium (all of which Davy had isolated himself). Nevertheless, -um spellings for elements were not unknown at the time, as for example platinum, known to Europeans since the sixteenth century, molybdenum, discovered in 1778, and tantalum, discovered in 1802. The -um suffix is consistent with the universal spelling alumina for the oxide, as lanthana is the oxide of lanthanum, and magnesia, ceria, and thoria are the oxides of magnesium, cerium, and thorium respectively.

The spelling used throughout the 19th century by most U.S. chemists ended in -ium, but common usage is less clear.[47] The -um spelling is used in the Webster's Dictionary of 1828. In his advertising handbill for his new electrolytic method of producing the metal 1892, Charles Martin Hall used the -um spelling, despite his constant use of the -ium spelling in all the patents[40] he filed between 1886 and 1903.[48] It has consequently been suggested that the spelling reflects an easier to pronounce word with one fewer syllable, or that the spelling on the flier was a mistake. Hall's domination of production of the metal ensured that the spelling aluminum became the standard in North America; the Webster Unabridged Dictionary of 1913, though, continued to use the -ium version.

In 1926, the American Chemical Society officially decided to use aluminum in its publications; American dictionaries typically label the spelling aluminium as a British variant.

The name "aluminum" is derived from its status as a base of alum; "alum" in turn is a Latin word which literally means "bitter salt".[49]

Present-day spelling[]

Most countries use the spelling aluminium (with an i before -um). In the United States, this spelling is largely unknown, and the spelling aluminum predominates.[50][51] The Canadian Oxford Dictionary prefers aluminum, whereas the Australian Macquarie Dictionary prefers aluminium.

The International Union of Pure and Applied Chemistry (IUPAC) adopted aluminium as the standard international name for the element in 1990, but three years later recognized aluminum as an acceptable variant. Hence their periodic table includes both.[52] IUPAC officially prefers the use of aluminium in its internal publications, although several IUPAC publications use the spelling aluminum.[53]

Health concerns[]

NFPA 704
Template:NFPA 704
Fire diamond for aluminum shot

Despite its natural abundance, aluminium has no known function in living cells and presents some toxic effects in elevated concentrations. Its toxicity can be traced to deposition in bone and the central nervous system, which is particularly increased in patients with reduced renal function. Because aluminium competes with calcium for absorption, increased amounts of dietary aluminium may contribute to the reduced skeletal mineralization (osteopenia) observed in preterm infants and infants with growth retardation. In very high doses, aluminium can cause neurotoxicity, and is associated with altered function of the blood-brain barrier.[54] A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium, such as deodorants or antacids. In those without allergies, aluminium is not as toxic as heavy metals, but there is evidence of some toxicity if it is consumed in excessive amounts.[55] Although the use of aluminium cookware has not been shown to lead to aluminium toxicity in general, excessive consumption of antacids containing aluminium compounds and excessive use of aluminium-containing antiperspirants provide more significant exposure levels. Studies have shown that consumption of acidic foods or liquids with aluminium significantly increases aluminium absorption,[56] and maltol has been shown to increase the accumulation of aluminium in nervous and osseus tissue.[57] Furthermore, aluminium increases estrogen-related gene expression in human breast cancer cells cultured in the laboratory.[58] These salts' estrogen-like effects have led to their classification as a metalloestrogen.

Because of its potentially toxic effects, aluminium's use in some antiperspirants, dyes (such as aluminium lake), and food additives is controversial. Although there is little evidence that normal exposure to aluminium presents a risk to healthy adults,[59] several studies point to risks associated with increased exposure to the metal.[60] Aluminium in food may be absorbed more than aluminium from water.[61] Some researchers have expressed concerns that the aluminium in antiperspirants may increase the risk of breast cancer,[62] and aluminium has controversially been implicated as a factor in Alzheimer's disease.[63] The Camelford water pollution incident involved a number of people consuming aluminium sulfate. Investigations of the long-term health effects are still ongoing, but elevated brain aluminium concentrations have been found in post-mortem examinations of victims who have later died, and further research to determine if there is a link with cerebral amyloid angiopathy has been commissioned.[64]

According to The Alzheimer's Society, the overwhelming medical and scientific opinion is that studies have not convincingly demonstrated a causal relationship between aluminium and Alzheimer's disease.[65] Nevertheless, some studies, such as those on the PAQUID cohort,[66] cite aluminium exposure as a risk factor for Alzheimer's disease. Some brain plaques have been found to contain increased levels of the metal.[67] Research in this area has been inconclusive; aluminium accumulation may be a consequence of the disease rather than a causal agent. In any event, if there is any toxicity of aluminium, it must be via a very specific mechanism, since total human exposure to the element in the form of naturally occurring clay in soil and dust is enormously large over a lifetime.[68][69] Scientific consensus does not yet exist about whether aluminium exposure could directly increase the risk of Alzheimer's disease.[65]

Effect on plants[]

Aluminium is primary among the factors that reduce plant growth on acid soils. Although it is generally harmless to plant growth in pH-neutral soils, the concentration in acid soils of toxic Al3+ cations increases and disturbs root growth and function.[70][71][72]

Most acid soils are saturated with aluminium rather than hydrogen ions. The acidity of the soil is therefore a result of hydrolysis of aluminium compounds.[73] This concept of "corrected lime potential"[74] to define the degree of base saturation in soils became the basis for procedures now used in soil testing laboratories to determine the "lime requirement"[75] of soils.[76]

Wheat's adaptation to allow aluminium tolerance is such that the aluminium induces a release of organic compounds that bind to the harmful aluminium cations. Sorghum is believed to have the same tolerance mechanism. The first gene for aluminium tolerance has been identified in wheat. It was shown that sorghum's aluminium tolerance is controlled by a single gene, as for wheat.[77] This is not the case in all plants.

See also[]

Template:Wikipedia-Books Template:Colbegin

  • Aluminium: The Thirteenth Element
  • Aluminium alloy
  • Aluminium battery
  • Aluminium foil
  • Beverage can
  • Institute for the History of Aluminium (IHA)
  • List of countries by aluminium production
  • Aluminium industry in Russia



  1. Template:Cite web
  2. 2.0 2.1 Polmear, I. J. (1995). Light Alloys: Metallurgy of the Light Metals. Arnold. ISBN 9780340632079. 
  3. Dieter G. E. (1988). Mechanical Metallurgy. McGraw-Hill. ISBN 0070168938. 
  4. H. A. Macleod (2001). Thin-film optical filters. CRC Press. pp. 158–159. ISBN 0750306882. 
  5. John F. Cochran and D. E. Mapother (July 1958). "Superconducting Transition in Aluminum". Physical Review 111 (1): 132–142. doi:10.1103/PhysRev.111.132. 
  6. Template:Cite web
  7. Robert T. Dodd (1986). Thunderstones and Shooting Stars. Cambridge, Mass.: Harvard University Press. pp. 89–90. ISBN 0-674-89137-6. 
  8. 8.0 8.1 8.2 Template:Greenwood&Earnshaw2ndTemplate:Inote
  9. Template:Cite web
  10. Guilbert, John M. and Carles F. Park (1986). The Geology of Ore Deposits. Freeman. pp. 774–795. ISBN 0-7167-1456-6. 
  11. Emsley, John (2001). "Aluminium". Nature's Building Blocks: An A-Z Guide to the Elements. Oxford, UK: Oxford University Press. p. 24. ISBN 0198503407. 
  12. S Venetski (July 1969). ""Silver" from clay". Metallurgist 13: 451. doi:10.1007/BF00741130. 
  13. ChemMatters October 1990 p. 14.
  14. G. J. Binczewski (1995). "The Point of a Monument: A History of the Aluminum Cap of the Washington Monument". JOM 47: 20. 
  15. John A. S. Green (2007). Aluminum recycling and processing for energy conservation and sustainability. Materials Park, Ohio: ASM International. p. 198. ISBN 0871708590. 
  16. Template:Cite web
  17. Christoph Schmitz, Josef Domagala, Petra Haag (2006). Handbook of aluminium recycling: fundamentals, mechanical preparation, metallurgical processing, plant design. Vulkan-Verlag GmbH. p. 27. ISBN 3802729366. 
  18. Template:Cite web
  19. Template:Cite web
  20. Template:Cite web
  21. Template:Cite web
  22. Hwang, J.Y., Huang, X., Xu, Z. (2006). "Recovery of Metals from Aluminium Dross and Salt cake". Journal of Minerals & Materials Characterization & Engineering 5: 47. 
  23. Template:Cite web
  24. Dunster, A.M., Moulinier, F., Abbott, B., Conroy, A., Adams, K., Widyatmoko, D.(2005). Added value of using new industrial waste streams as secondary aggregates in both concrete and asphalt. DTI/WRAP Aggregates Research Programme STBF 13/15C. The Waste and Resources Action Programme.
  25. 25.0 25.1 25.2 Dohmeier, C.; Loos, D.; Schnöckel, H. (1996). "Aluminum(I) and Gallium(I) Compounds: Syntheses, Structures, and Reactions". Angewandte Chemie International Edition 35: 129. doi:10.1002/anie.199601291. 
  26. D. C. Tyte (1964). "Red (B2Π–A2σ) Band System of Aluminium Monoxide". Nature 202: 383. doi:10.1038/202383a0. 
  27. Merrill, P. W., Deutsch, A. J., & Keenan, P. C. (1962). "Absorption Spectra of M-Type Mira Variables". Astrophysical Journal 136: 21. doi:10.1086/147348. 
  28. Template:Cite encyclopedia
  29. L E Hetherington, T J Brown, A J Benham, P A J Lusty, N E Idoine (2007) (available online). World Mineral Production: 2001–2005. British Geological Survey. ISBN 978-0-85272-592-4. 
  30. Rising Chinese Costs to Support Aluminum Prices Bloomberg News, November 23, 2009
  31. Template:Cite web
  32. Template:Cite web
  33. 33.0 33.1 Wöhler, Friedrich. "Ueber das Aluminium". Annalen der Physik und Chemie. 
  34. Template:Cite web
  35. Template:Cite web
  36. I.J. Polmear. (2006). "Production of Aluminium". Light alloys from traditional alloys to nanocrystals. Oxford: Elsevier/Butterworth-Heinemann. pp. 15–16. ISBN 9780750663717. 
  37. Karmarsch, Carl (1864). "Fernerer Beitrag zur Geschichte des Aluminiums". Polytechnisches Journal 171 (1). 
  38. George J. Binczewski (1995). "The Point of a Monument: A History of the Aluminum Cap of the Washington Monument". JOM 47 (11): 20–25. 
  39. "Cowles' Aluminium Alloys". The Manufacturer and Builder (New York: Western and Company, via Cornell University Library) 18 (1): 13. January 1886. Retrieved 2007-10-27.  and McMillan, Walter George (1891). A Treatise on Electro-Metallurgy. London, Philadelphia: Charles Griffin and Company, J.B. Lippincott Company, via Google Books scan of New York Public Library copy. pp. 302–305. Retrieved 2007-10-26.  and Sackett, William Edgar, John James Scannell and Mary Eleanor Watson (1917/1918). New Jersey's First Citizens. New Jersey: J.J. Scannell via Google Books scan of New York Public Library copy. pp. 103–105. Retrieved 2007-10-25. 
  40. 40.0 40.1 Template:US patent reference
  41. Donald Holmes Wallace (1977) [1937]. Market Control in the Aluminum Industry. Harvard University Press via Ayer Publishing via Google Books limited view. p. 6. ISBN 0-4050-9786-7. Retrieved 2007-10-27. 
  42. Aluminum prices.
  43. "alumium", Oxford English Dictionary. Ed. J.A. Simpson and E.S.C. Weiner, second edition Oxford: Clarendon Press, 1989. OED Online Oxford University Press. Accessed 29 October 2006. Citation is listed as "1808 SIR H. DAVY in Phil. Trans. XCVIII. 353". The ellipsis in the quotation is as it appears in the OED citation.
  44. "Davy", Humphry (1808). "Electro Chemical Researches, on the Decomposition of the Earths; with Observations on the Metals obtained from the alkaline Earths, and on the Amalgam procured from Ammonia". Philosophical Transactions of the Royal Society of London 98: 353. Retrieved 2009-12-10. 
  45. Davy, Sir Humphry (1812). Elements of Chemical Philosophy. ISBN 0217889476. Retrieved 2009-12-10. 
  46. "Elements of Chemical Philosophy By Sir Humphry Davy". Quarterly Review VIII: 72. 1812. ISBN 0217889476. Retrieved 2009-12-10. 
  47. Template:Cite web, "In the USA, the position was more complicated. Noah Webster's Dictionary of 1828 has only aluminum, though the standard spelling among US chemists throughout most of the nineteenth century was aluminium; it was the preferred version in The Century Dictionary of 1889 and is the only spelling given in the Webster Unabridged Dictionary of 1913."
  48. Template:Cite web
  49. Template:Cite web
  50. Template:Greenwood&Earnshaw1st
  51. John Bremner, Words on Words: A Dictionary for Writers and Others Who Care about Words, pp. 22–23. ISBN 0-231-04493-3.
  52. IUPAC Periodic Table of the Elements.
  53. IUPAC Web site publication search for 'aluminum'.
  54. Banks, W.A.; Kastin, AJ (1989). "Aluminum-induced neurotoxicity: alterations in membrane function at the blood-brain barrier". Neurosci Biobehav Rev 13 (1): 47–53. doi:10.1016/S0149-7634(89)80051-X. PMID 2671833. 
  55. Template:Cite news
  56. Slanina, P.; Frech, W; Ekström, LG; Lööf, L; Slorach, S; Cedergren, A (1 March 1986). "Dietary citric acid enhances absorption of aluminum in antacids". Clinical Chemistry (American Association for Clinical Chemistry) 32 (3): 539–541. PMID 3948402. Retrieved 2008-10-09. 
  57. van Ginkel MF, van der Voet GB, D'Haese PC, De Broe ME, de Wolff FA, Effect of citric acid and maltol on the accumulation of aluminum in rat brain and bone, J Lab Clin Med. 1993 Mar;121: 453–60, PMID 8445293.
  58. Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast J Appl Toxicol. 2006 May-Jun;26(3):191–7.
  59. H. J. Gitelman, "Physiology of Aluminum in Man", in Aluminum and Health, CRC Press, 1988, ISBN 0824780264.
  60. Template:Cite pmid
  61. Yokel RA, Hicks CL, Florence RL (June 2008). "Aluminum bioavailability from basic sodium aluminum phosphate, an approved food additive emulsifying agent, incorporated in cheese". Food and chemical toxicology 46 (6): 2261–6. doi:10.1016/j.fct.2008.03.004. PMID 18436363. PMC 2449821. 
  62. Exley C, Charles LM, Barr L, Martin C, Polwart A, Darbre PD (September 2007). "Aluminium in human breast tissue". J. Inorg. Biochem. 101 (9): 1344–6. doi:10.1016/j.jinorgbio.2007.06.005. PMID 17629949. 
  63. Ferreira PC, Piai Kde A, Takayanagui AM, Segura-Muñoz SI (2008). "Aluminum as a risk factor for Alzheimer's disease". Rev Lat Am Enfermagem 16 (1): 151–7. PMID 18392545. 
  64. Template:Cite news
  65. 65.0 65.1 Aluminium and Alzheimer's disease, The Alzheimer's Society. Retrieved 30 January 2009.
  66. Template:Cite doi
  67. Template:Cite doi
  68. Template:Cite web
  69. Template:Cite news
  70. Andersson, Maud (1988). "Toxicity and tolerance of aluminium in vascular plants". Water, Air, & Soil Pollution 39 (3–4): 439–462. doi:10.1007/BF00279487 (inactive 2009-11-14). 
  71. Horst, Walter J. (1995). "The role of the apoplast in aluminium toxicity and resistance of higher plants: A review". Zeitschrift für Pflanzenernährung und Bodenkunde 158 (5): 419–428. doi:10.1002/jpln.19951580503. 
  72. Ma, Jian Feng; Ryan, PR; Delhaize, E (2001). "Aluminium tolerance in plants and the complexing role of organic acids". Trends in Plant Science 6 (6): 273–278. doi:10.1016/S1360-1385(01)01961-6. PMID 11378470. 
  73. Turner, R.C. and Clark J.S. (1966). "Lime potential in acid clay and soil suspensions". Trans. Comm. II & IV Int. Soc. Soil Science: 208–215. 
  74. Template:Cite web
  75. Template:Cite news
  76. Applying lime to soils reduces the Aluminum toxicity to plants. Template:Cite web Note this link loads slowly
  77. J. V. Magalhaes (2004). "Comparative Mapping of a Major Aluminum Tolerance Gene in Sorghum and Other Species in the Poaceae". Genetics 167: 1905. doi:10.1534/genetics.103.023580. 

External links[]


Template:Clear Template:Aluminium compounds Template:Compact periodic table Template:Link FA

af:Aluminium ar:ألومنيوم an:Aluminio ast:Aluminiu az:Alüminium bn:অ্যালুমিনিয়াম zh-min-nan:Al (goân-sò͘) be:Алюміній bs:Aluminijum br:Aluminiom bg:Алуминий ca:Alumini cv:Алюмини cs:Hliník co:Alluminiu cy:Alwminiwm da:Aluminium de:Aluminium nv:Béésh Ászólí et:Alumiinium el:Αργίλιο myv:Люм es:Aluminio eo:Aluminio eu:Aluminio fa:آلومینیم fr:Aluminium fy:Aluminium fur:Alumini ga:Alúmanam gv:Ollymin gd:Almain gl:Aluminio hak:Lî (鋁) xal:Гицан ko:알루미늄 haw:‘Aluminuma hy:Ալյումին hi:एल्युमिनियम hr:Aluminij io:Aluminio id:Aluminium ia:Aluminium is:Ál it:Alluminio he:אלומיניום jv:Alumunium kn:ಅಲ್ಯೂಮಿನಿಯಮ್ pam:Aluminiu kk:Алюминий sw:Alumini ht:Aliminyòm ku:Bafûn la:Aluminium lv:Alumīnijs lb:Aluminium lt:Aliuminis lij:Alluminio jbo:jinmrmalume lmo:Aluminio hu:Alumínium mk:Алуминиум mg:Viraty ml:അലൂമിനിയം mr:ऍल्युमिनियम ms:Aluminium mn:Хөнгөн цагаан nl:Aluminium new:एलुमिनियम ja:アルミニウム no:Aluminium nn:Aluminium nov:Aluminie oc:Alumini uz:Aluminiy pnb:الومنیم ps:الومېنيم nds:Aluminium pl:Glin pt:Alumínio ksh:Allu ro:Aluminiu qu:Ch'aqu q'illay ru:Алюминий sah:Алүминиум stq:Aluminium sq:Alumini scn:Alluminiu simple:Aluminium sk:Hliník sl:Aluminij sr:Алуминијум sh:Aluminijum fi:Alumiini sv:Aluminium tl:Aluminyo ta:அலுமினியம் te:అల్యూమినియం th:อะลูมิเนียม tg:Алюминий tr:Alüminyum uk:Алюміній ur:Aluminium ug:ئاليۇمىن vi:Nhôm fiu-vro:Alumiinium war:Aluminium yi:אלומיניום yo:Alumíníọ̀mù zh-yue:鋁 bat-smg:Aliomėnis zh:铝